

Texas Linux Fest 2011

Austin, TX

Hilton Hotel

Saturday April 2, 2011

2:00 – 2:45 PM CST

The following slides accompany recorded audio, and were part of a presentation at:

http://texaslinuxfest.org/ http://www.thomasstover.com/ladtools/

© C. Thomas Stover 2011

http://texaslinuxfest.org/
http://www.thomasstover.com/ladtools/

Defining “Automation”

More Generally – substituting repetitive, tedious,
dangerous, or difficult human labor with
technology

More Specifically & More Currently - interfacing
computers with sensors and machines; ie input
and output in the “real” physical world

Lineage of Automation

• Related to, but not really the same story as:
• History of Harnessed Energy
• History of Industrialization
• History of Mechanization
• History of Robotics
• History of Telemetry
• History of Computer Science
• History of Data Recording
• History of Electronics
• History of Civil & Defense Engineering

An Automated World
is a

Hackable World

PC Based DAQ / Control

●Special PC-104/PCI/PCI-E boards
●Heavy use of “break out box” wiring
●USB / IEEE variations
●Embedded & Industrialized PCs
●High Bandwidth IO, i.e. sonar data
●Often real time OS is used
●Occasionally with integrated FPGA

Microcontrollers in Automation

●Probably the most common in hobbyist uses

●Prototype Boards vs Volume Fabrication

●Quantity, Availability, Purchasing issues

●BASIC variants / uCLinux / C w/ no os

ASIC & FPGA
in Automation

PLC Based Automation

● Component Separation
● Development
● Robustness
● Hard / Soft Real Time

● Regulatory / Building Code Approval
● It's “accepted”
● The way many fields are being “trained” to think

The PLC Industry

&

AD disclaimers

Why Linux?

● Long Term Time Scale and Stability
● More Development Choices
● Security, Security, Security

What about MODBUS?

L.A.D. Tools

● C library
● Language Bindings
● Data proxy / connection sharing server
● Utilities
● Integration with other software

Hardware

Instrumentation Automated Devices

LAD Tools

Driver Programs

Database, Interface, System Logic

Multi-tiered Automation Architecture

Alternative Use Cases

Power cycle buggy hardware

Server Closet Monitoring

Home / Building Automation

Science Projects

Relays

Magnetically
Sensitive
Switch

(read switch)

Electric Magnet

“coil” “contact”

Logic from one circuit can be proxied to another.

Search for “Harry Porter's Relay Computer”

Relays
on_coil_signal_or_hardware_interrupt()
{

 for each normally open contact()
 {
 contact state = coil_energized_state;
 }

 for each normally closed contact()
 {
 contact state = !(coil_energized_state);
 }

}

Event Loops

Check for external stimulus

Dispatch Events

Interrupts, signals, sockets, files,
keyboard, mouse, joystick, serial
ports, messages, “contacts”

switch case, callbacks / delegates,
Inheritance, thread synchronization

Hardware Logic PLC Logic IO Logic
 PLC Driver Logic System Logic

Why serial?

● Legacy, Historical, “Standard”
● Proven, Robust, an enormous industry that

keeps growing
● Less ambiguous security model
● Can leverage modern hardware: fiber, wireless,

etc
● Works well in *nix
● API portability problems in general

Dataserver Model

dndataserver

PLC
PLC

PLC

dnquery

libladtools.so

wrappers

driver

driver

rs-232

rs-485

Data gram unix socket

driver

PLC Memory Model

● Flat
● Word addressable, not byte addressable
● Octal Notation
● Data in many formats, ie BCD
● “Special” facilities mapped to word memory

Why C?

● Best use of *nix shared library facilities
● lib, bin, dev, doc package separation & versioning

● Low resource overhead
● “Wrapability”

LAD Tools API Model

Memory Segment Objects

PLC Memory

Program Variables / Data

_get_address()
_set_address()

_read_integer()
_read_float()
_read_raw()
_read_string()

_write_integer()
_write_float()
_write_raw()
_write_string()

_serial_read_request()
_dataserver_link_read_request()

_serial_write_request()
_dataserver_link_write_request()

LAD Tools API Events

● Read Completed
● Write Completed
● Progress Notify
● Error Notify (data server connections)
● Error Handler (serial connections)

● Realized inside Glib Main Loop

Why Glib?

OPC

● V1 = Windows Commercial
● V2? We'll see

Some Integration Examples

● Zabbix
● MRTG
● RRDB
● Mom & Pop Bash & Cron
● DomotiGa

Sensory Presence

● High Level Point Variable Abstraction
● Database Abstraction
● User Interface Abstraction
● Rendering & Parsing Abstraction
● Network IO Abstraction
● API & Tools

Next, a quick demo was performed. A DL-06 with the above* program loaded,
was connected to a USB serial dongle on /dev/ttyUSB0. The dataserver program
was run in one window in foreground mode with debugging output turned on. Four
example clients were shown: 1) the general purpose dnquerry utility, 2) a task
specific command line program, 3) a task specific Gtk+ program, and 4) a task
specific web program using libsoup. The next slides are terminal output samples
& screen shots of those 5 items. The full source code will be available at
http://www.thomasstover.com/ladtools/

*That was actually the wrong slide. The real program will be available with the
project files on the web site.

http://www.thomasstover.com/ladtools/

thomas@softtaco:~/ladtools$ LD_LIBRARY_PATH=./ ./dndataserver -v -N dev=/dev/ttyUSB0
Serial Network 0 parsed as: Device="/dev/ttyUSB0", BPS=9600, Retries=0, Timeout=0, Master
ID=0
socket_input_event()
read request: net=0, slave=1, priority=0, address="40600", length=2, context code=0
que_operation()
schedule_network_activity()
start_operation()
plc_read_completed()
issue_operation_success()
schedule_network_activity()
socket_input_event()
write request: net=0, slave=1, priority=0, address="40600", length=1
que_operation()
schedule_network_activity()
start_operation()
plc_write_completed()
issue_operation_success()
schedule_network_activity()
socket_input_event()
read request: net=0, slave=1, priority=0, address="40600", length=1, context code=0
que_operation()
schedule_network_activity()
start_operation()
plc_read_completed()
issue_operation_success()

thomas@softtaco:~/ladtools$ LD_LIBRARY_PATH=./ ./lightingdemo1cl -f
thomas@softtaco:~/ladtools$ LD_LIBRARY_PATH=./ ./dnquery -u ./LADTOOLSDATASERVER -a
40600 -r 1 --RAW --bin
00000000
thomas@softtaco:~/ladtools$ LD_LIBRARY_PATH=./ ./lightingdemo1cl -o
thomas@softtaco:~/ladtools$ LD_LIBRARY_PATH=./ ./dnquery -u ./LADTOOLSDATASERVER -a
40600 -r 1 --RAW --bin
00000001

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

