

Open Source
Libraries?

● License “...PROJ.4 has been placed under an MIT
license. I believe this to be as close as possible to public
domain while satisfying those who say that a copyright
notice is required in some countries...”

● URL http://trac.osgeo.org/proj/

● Originally By Frank Warmerdam

http://trac.osgeo.org/proj/

● Pretty much solve
any map projection
needs a programmer
would ever have

● Supported by the
U.S. Department of
the Interior

● What many, many
products and tools
use behind the
scenes

● Mature and Reliable
● Simple API (only 5

main functions!)

● C, Native Interface

● Python, Pyrex Generated

● Perl, Geo::Proj4

● PHP, “Map Server” project

● Java, JH Labs (port) or JNI

● Ruby, Proj4rb

● .NET, DIY wrappers
(examples on google)

● Fortran, pretty complete
wrappers examples
online

● Others, DIY wrappers

Language Bindings

Different Types of “Open Source”
●Fake Open Source: legal tricks, NDAs, lies, “pay for
source”, only printed on paper, ext.

●Junk: useful license, worthless software

●Pay-for-commercial-use: free only for non-commercial
use, license fees / royalties required otherwise; not much
new there

●GPL style: Great for applications, kernels, ext. (even in
commercial environments) Useless for libraries in
commercial projects.

●L-GPL / Apache / MIT / BSD style: the sweet spot

● The standard cryptographic tool kit for most of
the software world

● Well respected, mature, used practically
everywhere; finally approved for US govt. use

● Support for hardware based cryptographic
acceleration, although limited implementations
(e.g. VIA padlock)

● The only kind of crypto package you can “trust”

● Advanced Random Number Facilities
● One Way Hash/Digest (MD5, SHA, ...)
● Two Way Block / Stream Ciphers (AES, DES, BF, ..)
● Public Key Infrastructure (RSA, DSA, ...)
● High Level Protocol Suites (TLS, SSL, ...)
● The extra useful opensslopenssl command line utility
● Key File (PEM) Import / Export

What does OpenSSL give you?

● 90% of figuring it out is understanding the
underlying technologies, how they work
together, and what you want to do

● 10% is understanding the implementation
details

Language Bindings
● C, native interface

● Python, PyOpenSSL

● Java, JavaSSL

● C#, OpenSSL.NET

● Some others not mentioned

● Others, DIY native wrappers
(many examples on google)

● Perl, Crypt::OpenSSL

● PHP, Cryptography
Extensions -> OpenSSL

● Ruby, RubyPKI

● Shell scripts, openssl
command line tool

Common Cross Language Methods

● Component Architectures (CORBA, COM,
RPC, UNO, SOAP, .NET Remoting, ...)

● Virtual Machine Byte Code (JVM, .NET,
AIR/SWF, LLVM...)

● Dynamic Symbols wrapped by language-native
objects

● External helper processes w/ IPC
● Source Translation

● License, LGPL2.1 or MPL1.1
● URL, www.cairographics.org
● Big Sponsors, Intel, RedHat, Mozilla,

Novel, others...

http://www.cairographics.org/

Vector vs Raster

● Superior Anti-Aliasing

● Excellent Bezier Curves

● Path Based

● Sources (the paint) can be
solids, patterns, images,
ext.

● Full Alpha Blending

● Transformation Matrices

● Advanced Scaling
Geometry

● Save & restore drawing
context stack

● Mix cairo vector graphics
with external raster
sources (like Image
Magick)

● Output to image formats
(png natively), PDF,
SVG, X11, GDI, Quartz,
raw memory, postscript

● Integrated with
FreeType, and Pango

 pattern = cairo_pattern_create_linear(0, 0, width, height);
 cairo_pattern_add_color_stop_rgba(pattern, 1, .8, .3, .5, 1);
 cairo_pattern_add_color_stop_rgba(pattern, 0, .3, .5, .8, 1);

 cairo_set_source(cr, pattern);
 cairo_rectangle(cr, 0, 0, width, height);
 cairo_fill(cr);
 cairo_pattern_destroy(pattern);

First the background gradient...

●cr is the cairo context object
●width & height are the window's size in pixels

 cairo_save(cr);
 cairo_set_source_rgb(cr, 0, 0, 0);
 cairo_text_extents(cr, "SCENE MISSING", &extents);

 scaler = width / extents.width;
 text_x = (width / 2) - ((extents.width * scaler) / 2);
 text_y = (height / 2) + ((extents.height * scaler) / 2);
 if(extents.height * scaler > height)
 {
 scaler = height / extents.height;
 text_y = (height / 2) + ((extents.height * scaler) / 2);
 text_x = (width / 2) - ((extents.width * scaler) / 2);
 }

 cairo_move_to(cr, text_x, text_y);
 cairo_scale(cr, scaler, scaler);
 cairo_show_text(cr, "SCENE MISSING");
 cairo_stroke(cr);
 cairo_restore(cr);

Scaled “Scene Missing”
Text...

 cairo_set_source_rgb(cr, 1, 1, 1);
 dashes[0] = 2; dashes[1] = 1;
 cairo_set_dash(cr, dashes, 2, 0);

 cairo_move_to(cr, width / 3, 0);
 cairo_line_to(cr, width / 3, height);
 cairo_move_to(cr, 0, height / 3);
 cairo_line_to(cr, width, height / 3);
 cairo_stroke(cr);
 cairo_set_dash(cr, NULL, 0, 0);

 snprintf(string, 25, "width (%d)", width);
 cairo_text_extents(cr, string, &extents);
 cairo_move_to(cr, (width / 2) - (extents.width / 2),
 height / 3 + extents.height);
 cairo_show_text(cr, string);
 snprintf(string, 25, "height (%d)", height);
 cairo_text_extents(cr, string, &extents);
 cairo_move_to(cr, width / 3 + 2, height * .75);
 cairo_show_text(cr, string);
 cairo_stroke(cr);

Dashed lines and labels...

Advanced scaling
geometry greatly
simplifies code.

● C, Native Interface

● C++, cairomm

● Python, PyCairo

● .NET, Mono.Cairo

● Ruby, rcairo

● PHP, cairo-php

● Perl, cairo-perl

● Java, cairo-java & CairoJava

● D, cairoD

● Others for Haskell,
Common Lisp, Nickle,
Objective Caml, Scheme,
Squeak, Lua, Vala, and
more!

Language Bindings

Toolkit Support
● GTK+

● FLTK

What is Cross Platform?
● Practically speaking, cross-platform means

support for two things:

The Modern Unix / Posix
Family Windows

What is Cross Platform?
● Often times it also means support for even less

common environments.

● URL, ww.zlib.net
● License, BSDish
● Authors, Jean-loup Gailly and Mark Adler

● Patent free
● Works everywhere
● Very good compression
● Tons of things use it behind the scenes

● C, native

● C++, gzstream

● Java, java.util.zip &
JZlib (pure Java re-
implementation)

● Perl, Compres::Zlib

● .NET, ZLIB.NET (pure
.NET re-implementation)

● Python, included

● Delphi, delphi-zlib

● Tcl, mkziplib

● Pascal, zlib-pascal

● PHP, included

● Ruby, included

Language Bindings

Libraries vs Other Concepts

● Application Frameworks
● Specialized Languages
● Published Algorithms
● RFCs & IEEE specs

● URL, curl.haxx.se.libcurl
● License, BSDish

● Free (of course)
● thread-safe
● IPv6 compatible
● Good documentation
● TLS/SSL support
● High Quality
● Fast
● File transfer resume

● FTP, FTPS, HTTP,
HTTPS, SCP, SFTP,
TFTP, TELNET, DICT,
LDAP, LDAPS

● SSL Certificates
● HTTP POST/PUT/GET,

cookies
● Proxy support
● Password auth, NTLM,

Negotiate, Kerberos4

● C (native)

● Ada95

● Basic

● C++

● OCaml

● D

● R

● TCL

Language Bindings

● Python

● Ruby

● PHP

● Pascal

● Scheme

● Smalltalk

● .Net

● Java

● Lisp

● Lua

● Visual Basic

● Q

● SP-Forth

● SPL

● Gambas

● More crazy ones...

● Glib
● WxWidgets
● PostgreSQL
● Cocoa
● Way more...

Integration with other Libraries & Tools

Importing Native/Dynamic Symbols

● Java, JNI
● Python, Perl, PHP,

Ruby, module APIs
● .NET, Pinvoke() or -

(somewhat different
concept) COM

● C++, built in
● ObjC, built in

● Fortran (sometimes),
gcc tricks

● Pascal (sometimes),
gcc tricks

● TCL, CriTcl
● Almost everything,

SWIG
● Gobject type system

Graphviz

● URL, www.graphviz.org
● License, CPL 1.0
● Original Author, AT&T Research

http://www.graphviz.org/

Graphviz

Graphviz

Graphviz

Graphviz

Graphviz

Graphviz

Graphviz

graph G {
 e
 subgraph clusterA {
 a -- b;
 subgraph clusterC {
 C -- D;
 }
 }
 subgraph clusterB {
 d -- f
 }
 d -- D
 e -- clusterB
 clusterC -- clusterB
}

Graphviz

Graphviz
rendering

directly to a
cairo drawing

context
embedded

inside a Gtk+
GUI

application...

Graphviz

● C: native

● C++: mfgraph

● C#: QuickGraph

● Java: Grappa

● Python: pydot, yapgvb,
mfgraph

● Ruby: RAA, GraphR

● TCL: tcldot

● Perl: Tons of wrappers

● PHP: in PEAR

Language Bindings

● COM: WinGraphviz

● R: R-Grpahviz

● MatLab support

Other

Image Magick

● URLURL, www.imagemagick.org
● License, “GPL compatible”; commercial use OK
● Yes, that is how it's spelled

http://www.imagemagick.org/

Image Magick

 “It can read, convert and write images in a
variety of formats (over 100) including DPX,
EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD,
PNG, Postscript, SVG, and TIFF. Use
ImageMagick to translate, flip, mirror, rotate,
scale, shear and transform images, adjust image
colors, apply various special effects, or draw text,
lines, polygons, ellipses and Bézier curves.”

 - from the website

Image Magick

● Good for adding file formats and advanced raster
functions to Cairo

● Manipulate image file comments and meta data

● Great way to automate / batch process

● Allows for decoding and encoding image formats to
and from raw memory buffers. (i.e. take files straight
from libcurl and render them to screen with no disk IO)

Image Magick

● C, native (MagickWand)

● C++, Magick++

● Java, JMagick

● Perl, PerlMagic

● .NET, MagickNet

● Ruby, RMagick

● Python, PythonMagick

● COM+, ImageMagickObject

● Tcl, TclMagick

● Pascal, PascalMagick

● PHP, MagickWand for PHP

● Ada, G2F

● Lisp, L-Magick

Language Bindings

Image Magick

What is Commercial Use?

● A rough edge term over generalizing any
situation that you don't want to, or can't,
release the source code of your project

● “Normal” software licensed for money, or
written for clients that will own the
copyrights and retain legal rights to the
work

GTK
● Gtk ≠ GNOME
● Callback based, not

message or
inheritance based

● Automatic geometry
● Theme-able
● No special macro

language

● Highly portable;
multiple interfaces

● Tight cairo integration

GTK

Gtk+ with a Cairo Theme Engine...

GTK

● Not an “application
framework”, doesn't
“take over” your app

● Real back end
implementations, not
wrappers

● RAD tools available
(though not
recommended)

● Modern and simple
compared to win32,
MFC, winforms, motif,
AWT, ext..

GTK
on

OSX

Why use it?

● In a web-centric world, the case for a desktop
app is hard to make with out being cross-
platform

● There is almost every widget/control you need
● Once you get the concepts it's one of the easiest
● And of course.... the license

Just for fun...

Since, GTK has a xlib (soon to be xcfb)
back end for X11....
... and cygwin gives us a X11 dev
environment ...

URL, tokyocabinet.sourceforge.net

License, L-GPL

Author, Mikio Hirabayashi

(successor to QDBM)

● Low level data
storage facilities

● Hash, B+ Tree, fixed
length array

● Optional “in memory
only” databases

● Journaled file format
● Extremely fast

● Byte order independent,
portable

● Utilizes 64bit
● In and Out of process

models (server process)
● Server can use mcache

clients
● Thread safe

● C, native
● Java: Java API
● Perl, Perl API
● Ruby, Ruby API

● Python, PYTC
● Others, DIY import

wrappers
● Some other options with

mcache interface

Language Bindings

Yes, that's right...

● C, Native

● Others, DIY import wrappers

● Python, PyPy

● .NET, Iron Python

● Java, Jython

Language Bindings

Re-Implementations

Conclusions...

● A vast array of powerful software components
exist for free – right now!

● Cross Platform is doable more often than not.
● Open Source Libraries that people use are

great ways to gain notoriety.
● Isn't C useful?

Questions?

