

Unicode

Unicode Is...

The “phonebook” model for character encoding.

A symbol/character can be mapped to via a
registered number.

Thomas Stover 512-867-5309
integral (∫) u+222b

Quick History of
Character Sets

● Morse Code 1836

● Baudot 1870 - 5 bit word
telegraph line system

● Murray Code 1901 –
added CR/LF

● ITA2/USTTY circa 1930
– still used in TDDs

● EBCDIC 1963 - 8bit

● ASCII 1963 – 7bit

● Many Various ISO-*

● Universal Character Set
(Unicode) 1990 – still
being worked on;
encoding agnostic

Pre-Unicode – Extended ASCII

248 (Decimal)

F8 (HEX)

11111000

° Degree Symbol

U+00B0

Proprietary way of encoding. Not standard. Difficult to adapt to other
languages, symbols, and environments.

English: I can eat glass, and it doesn't hurt me.

French: Je peux manger du verre, ça ne me fait pas mal.

Korean: 나는 유리를 먹을 수 있어요 . 그래도 아프지 않아요

Classical Greek: αλον αγε ν δ ναμαι· το το ο με βλ πτει. ὕ ϕ ῖ ύ ῦ ὔ ά

Spanish: Puedo comer vidrio, no me hace daño.

Hawaiian: Hiki ia u ke ai i ke aniani; a ole nō lā au e eha. ʻ ʻ ʻ ʻ ʻ

Ukrainian: Я можу їсти шкло, й воно мені не пошкодить.

Turkish (Ottoman): ڭجام ييه بلورم با ضررى طوقونمز
Sources:
http://www.columbia.edu/kermit/utf8.html
http://www.alanwood.net/unicode/miscellaneous_symbols.html

http://www.columbia.edu/kermit/utf8.html

Not Just International Text

● Math ≥ ∞ ∛ ⊾⋩ ⊕ ⊅
● Music � � ♬ ♯
● Greek Ψ λ Ω Φ π
● Chess ♜ ♕ ♚ ♗
● Miscellaneous ☃ ☂ ☀ ☕ ☢ ☤ ☣ ♵ ♿
● Currency ฿, ¢, , $, €, ƒ, , , , , £, ,¥, , ₪, , ₡ ₲ ₴ ₭ ₱ ₦ ₩ ₮

〒 ,₧, , , ₰ ₯ ℳ
● Braille , , , , ⠋ ⠕ ⠍ ⠫ ⠳
● Sign Language (private use area)

OSS Project Leverage

● Wikipedia
● ~ 3.2 M English Entries
● ~ 1 M French Entries
● ~ 600k Polish Entries

● OLPC
● Implementing UI and data input for third world

nations in tens of dozens of foreign languages.
● Just in N.A there are hundreds of official recognized

spoken languages.

Where do these characters come
from?

● Documents / Files that already have them
● Cut & Paste
● Special Helper Programs (character maps)
● Keyboards
● Source Code

Gnome Character Map – cut & paste any character

Manually enter any hex code

Keyboard Input Options

●Key Remapping
● Sometime relabeling keys
● X11 allows for multiple keyboards each with
different mappings

●International Keyboards
● Again multiple simultaneous keyboards
possible

●Special Key Combinations (most common)

Unicode Input Key Combinations

● All Gtk+ applications: ctrl+shift+u, then hexadecimal code
(full 32bit support), then enter

● Windows: alt+decimal code on the keypad, then release
alt
● Works most of the time
● Must start with 0 (otherwise it's the old DOS behavior)

● Many application specific exist

● Qt (KDE) ?

One Type of Japanese Keyboard

One type of Hebrew Keyboard

One type of Russian Keyboard

Quick History of Unicode Encodings

● UCS-2 (Windows NT Era) limited to the first 2^16 characters of
Unicode; obsolete but still used

● UTF-16 – replaced UCS-2; almost identical except characters
D800 – DFFF can be “swapped out” for different ranges of the
remaining 4 billion possible characters

● Both of these are host ordered 2 byte integers resulting in the
LE/BE variants

● Used internally by Windows, Qt, Java, .Net, Python, & more

Quick History of Unicode Encodings

● UTF-32 / UCS-4 (32bit variant of the last page)

--Most of these can safely be ignored---

● UTF-7 (“7 bit clean” version of UTF-8 [more on that next])

● UTF-1 (pre UTF-8 variable length scheme with compatibility
with nothing)

● SCSU (odd ball compression scheme)

● BOCU-1 – merger of UTF-8, SCSU, & MIME (gross)

...and then there is...

UTF-8, helping you to forget!
● Greatest thing ever.
● All characters are

supported
● Byte Order (endianess)

independent
● Variable Length (bad, but

technically all Unicode
can be also more on that
latter)

● First 128 characters are
remapped to ASCII

● Compatible with the *nix world

● Compatible with the *nix style C
programming – stdio, POSIX
system calls, etc

● Allows for a great deal of
Unicode support with out doing
anything

● Conventionally, the only valid
way to put Unicode directly in
source of any kind. (without
escape codes)

● “cruise control” for UCS

UTF-EBCDIC

● Similar Concept to
UTF-8

● Store Unicode on
EBCDIC systems

Unicode in DBMS

Collation and Encoding

Always ensure your client is set to the same

Unicode in DBMS

Unicode on Mobile Devices

● Blackberry

● Android

● iPhone

Unicode in Web Browsers

● UTF-8 Works Great
● You MUST specify the “charset”

● Most JavaScript Functions will work with UTF-8
● ~ 50% of websites are using some encoding

other than UTF, like Latin1

Unicode in Web Browsers

Sites Using Unicode

UTF is only
recently being
implemented on a
wide scale in
website design.

Source:
http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html

Unicode in the console

Bytes Encoding
UTF-8

Unicode String

Font
freefont Typography /

Layout engine
Pango

2D Graphics
cairo

Viewable Text

Simplified overview of
how unicode text rendering

*images taken from www.pango.org/ScriptGallery

Pango Typesetting Engine

●Advanced Unicode Features
●Integrates with Cairo
●Vertical Text Support
●Used in MathML implementations

Unicode Filenames

● UTF-8 file names are
valid in Linux

● Linux Kernel actually
has to convert file
names to UTF-8 from
file systems that use
other Unicode
encodings (NTFS)

Unicode in Email
●UTF-8 works in message bodies
Content-type: text/plain; charset="utf-8"

●Attachments can of course be anything
●Base SMTP is ASCII only
●Possible use case of UTF-7 (resist the urge)
●Unicode in message headers is done with the RFC 2047 trick, that
switches out of ASCII mode to specific character sets

Unicode in DNS

● Probably will break the Internet.

● Just kidding - of course it uses UTF-8!

● Could not find anyone to allow us to register .us ☢
● RFC-3490; Only lowercase letters

● Max name length by byte count not char count

Quick Concepts

Internal Encoding –
The low level format
your program uses
internally for strings.

● Sometimes more than
one is needed

● May or may not be
the way strings are
presented in source
code

External Encoding –
The format a string
must be for a given
input, output, library
usage.

● Zero to Many might
be needed

● Usually requires the
most attention

Internal Encodings External Encodings

-Various Native Windows
-Qt
-normal Python
-wxWidgets
-.Net
-Java

Conversion Options

UTF-16

-Gtk+
-Posix style C
-shell scripts
-PHP (we think)

UTF-8

-Advanced text programs
-special build of Python

UTF-32

•EBDIC
•ASCII
•UTF-* LE/BE
•Old ISO-*codepages

●Built in Functions
(most non-C
environments)
●Iconv
●ICU (IBM)
●Manually

Unicode in
Python

“unicode fonts”

● GNU FreeFont / Free UCS Outline Font
(GPLv3 with “Font Exemption”)

● GNU Unifont (GPL) 27,000 characters
● No existing font file format can support all

characters

Private Use Area (PUA)

● Reserved sections of
the address space for
personal / corporate /
freestyle use.

● One of these sections
is in the more
compatible “code
page 0” / “multilingual
plane” range
(U+E000 to U+F8FF)

● Many unofficial
standard uses:
● Klingon
● Medieval characters
● Other math symbol

efforts
● Personal names in

Asian Glyphs
● Not yet accepted

languages

The road to a
truetype Tux
glyph.

Font Forge F/OSS Font Editing Suite

fontforge.sourceforge.net

Remember, in Gtk+ apps:
ctrl+shift+u, then hex code

Where is tux's right eye?
Complexities of true type?

“Advanced” Unicode Operations

● Case Conversions /
Collations

● Combining
Characters

● Control Characters
● Variable Spaces
● Bi-directional text

control
● Fraction Slash

● Script Specific (ie
Music Notation Format)

● Surrogates (UTF-16
retrofitting)

● Simple String Length
(not so simple)

● Encoding Sanity Check
/ Verification

● Numeric Character to
Numerical Value

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

