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Unicode Is...

The “phonebook” model for character encoding.

A symbol/character can be mapped to via a 
registered number.

Thomas Stover 512-867-5309
integral ( ∫ ) u+222b



  

Quick History of 
Character Sets

● Morse Code 1836

● Baudot 1870 - 5 bit word 
telegraph line system

● Murray Code 1901 – 
added CR/LF 

● ITA2/USTTY circa 1930 
– still used in TDDs

● EBCDIC 1963 - 8bit

● ASCII 1963 – 7bit

● Many Various ISO-*

● Universal Character Set 
(Unicode) 1990 – still 
being worked on; 
encoding agnostic



  

Pre-Unicode – Extended ASCII

248 (Decimal)

F8 (HEX)

11111000

° Degree Symbol

U+00B0

Proprietary way of encoding. Not standard. Difficult to adapt to other 
languages, symbols, and environments.



  

English: I can eat glass, and it doesn't hurt me.

French:  Je peux manger du verre, ça ne me fait pas mal. 

Korean:     나는 유리를 먹을 수 있어요 .   그래도 아프지 않아요 

Classical Greek: αλον αγε ν δ ναμαι· το το ο  με βλ πτει. ὕ ϕ ῖ ύ ῦ ὔ ά

Spanish: Puedo comer vidrio, no me hace daño. 

Hawaiian: Hiki ia u ke ai i ke aniani; a ole nō lā au e eha. ʻ ʻ ʻ ʻ ʻ

Ukrainian: Я можу їсти шкло, й воно мені не пошкодить. 

Turkish (Ottoman): ڭجام ييه بلورم با ضررى طوقونمز  
Sources: 
http://www.columbia.edu/kermit/utf8.html
http://www.alanwood.net/unicode/miscellaneous_symbols.html 

http://www.columbia.edu/kermit/utf8.html


  

Not Just International Text

● Math  ≥  ∞  ∛ ⊾⋩ ⊕ ⊅
● Music    � � ♬ ♯
● Greek Ψ λ Ω Φ π
● Chess    ♜ ♕ ♚ ♗
● Miscellaneous  ☃        ☂ ☀ ☕ ☢ ☤ ☣ ♵ ♿
● Currency ฿, ¢, , $, €, ƒ, , , , , £, ,¥, , ₪, , ₡ ₲ ₴ ₭ ₱ ₦ ₩ ₮

〒 ,₧, , ,  ₰ ₯ ℳ
● Braille , , , , ⠋ ⠕ ⠍ ⠫ ⠳
● Sign Language (private use area)



  

OSS Project Leverage

● Wikipedia
● ~ 3.2 M English Entries
● ~ 1 M French Entries
● ~ 600k Polish Entries

● OLPC
● Implementing UI and data input for third world 

nations in tens of dozens of foreign languages.
● Just in N.A there are hundreds of official recognized 

spoken languages. 



  

Where do these characters come 
from?

● Documents / Files that already have them
● Cut & Paste
● Special Helper Programs (character maps)
● Keyboards
● Source Code 



  

Gnome Character Map – cut & paste any character

Manually enter any hex code



  

Keyboard Input Options

●Key Remapping
● Sometime relabeling keys
● X11 allows for multiple keyboards each with 
different mappings

●International Keyboards
● Again multiple simultaneous keyboards 
possible

●Special Key Combinations (most common)



  

Unicode Input Key Combinations

● All Gtk+ applications: ctrl+shift+u, then hexadecimal code 
(full 32bit support), then enter

● Windows:  alt+decimal code on the keypad, then release 
alt 
● Works most of the time
● Must start with 0 (otherwise it's the old DOS behavior)

● Many application specific exist

● Qt (KDE) ?



  

One Type of Japanese Keyboard



  

One type of Hebrew Keyboard



  

One type of Russian Keyboard



  

Quick History of Unicode Encodings

● UCS-2 (Windows NT Era) limited to the first 2^16 characters of 
Unicode; obsolete but still used

● UTF-16 – replaced UCS-2; almost identical except characters 
D800 – DFFF can be “swapped out” for different ranges of the 
remaining 4 billion possible characters

● Both of these are host ordered 2 byte integers resulting in the 
LE/BE variants

● Used internally by Windows, Qt, Java, .Net, Python, & more



  

Quick History of Unicode Encodings

● UTF-32 / UCS-4 (32bit variant of the last page)

--Most of these can safely be ignored---

● UTF-7 (“7 bit clean” version of UTF-8 [more on that next])

● UTF-1 (pre UTF-8 variable length scheme with compatibility 
with nothing)

● SCSU (odd ball compression scheme)

● BOCU-1 – merger of UTF-8, SCSU, & MIME (gross)



  

...and then there is...



  

UTF-8, helping you to forget!
● Greatest thing ever.
● All characters are 

supported
● Byte Order (endianess) 

independent
● Variable Length (bad, but 

technically all Unicode 
can be also more on that 
latter)

● First 128 characters are 
remapped to ASCII

● Compatible with the *nix world

● Compatible with the *nix  style C 
programming – stdio, POSIX 
system calls, etc

● Allows for a great deal of 
Unicode support with out doing 
anything

● Conventionally, the only valid 
way to put Unicode directly in 
source of any kind. (without 
escape codes)

● “cruise control” for UCS



  

UTF-EBCDIC

● Similar Concept to 
UTF-8

● Store Unicode on 
EBCDIC systems



  

Unicode in DBMS

Collation and Encoding

Always ensure your client is set to the same



  

Unicode in DBMS



  

Unicode on Mobile Devices

● Blackberry

● Android

● iPhone



  

Unicode in Web Browsers

● UTF-8 Works Great
● You MUST specify the “charset”

● Most JavaScript Functions will work with UTF-8
● ~ 50% of websites are using some encoding 

other than UTF, like Latin1



  

Unicode in Web Browsers



  



  

Sites Using Unicode

UTF is only 
recently being 
implemented on a 
wide scale in 
website design.

Source: 
http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html



  



  



  

Unicode in the console



  

Bytes Encoding
UTF-8

Unicode String

Font
freefont Typography /

Layout engine
Pango

2D Graphics
cairo

Viewable Text

Simplified overview of
how unicode text rendering



  

*images taken from www.pango.org/ScriptGallery

Pango Typesetting Engine

●Advanced Unicode Features
●Integrates with Cairo
●Vertical Text Support
●Used in MathML implementations



  

Unicode Filenames

● UTF-8 file names are 
valid in Linux

● Linux Kernel actually 
has to convert file 
names to UTF-8 from 
file systems that use 
other Unicode 
encodings (NTFS)



  

Unicode in Email
●UTF-8 works in message bodies 
Content-type: text/plain; charset="utf-8"

●Attachments can of course be anything
●Base SMTP is ASCII only
●Possible use case of UTF-7 (resist the urge)
●Unicode in message headers is done with the RFC 2047 trick, that 
switches out of ASCII mode to specific character sets 



  

Unicode in DNS

● Probably will break the Internet. 

● Just kidding - of course it uses UTF-8!

● Could not find anyone to allow us to register .us ☢
● RFC-3490; Only lowercase letters

● Max name length by byte count not char count



  

Quick Concepts

Internal Encoding – 
The low level format 
your program uses 
internally for strings.

● Sometimes more than 
one is needed

● May or may not be 
the way strings are 
presented in source 
code

External Encoding – 
The format a string 
must be for a given 
input, output, library 
usage.

● Zero to Many might 
be needed

● Usually requires the 
most attention



  

Internal Encodings External Encodings

-Various Native Windows
-Qt
-normal Python
-wxWidgets
-.Net
-Java

Conversion Options

UTF-16

-Gtk+
-Posix style C
-shell scripts
-PHP (we think)

UTF-8

-Advanced text programs
-special build of Python

UTF-32

•EBDIC
•ASCII
•UTF-* LE/BE
•Old ISO-*codepages

●Built in Functions 
(most non-C 
environments)
●Iconv
●ICU (IBM)
●Manually



  

Unicode in 
Python



  



  

“unicode fonts”

● GNU FreeFont / Free UCS Outline Font 
(GPLv3 with “Font Exemption”)

● GNU Unifont (GPL) 27,000 characters
● No existing font file format can support all 

characters 



  

Private Use Area (PUA)

● Reserved sections of 
the address space for 
personal / corporate / 
freestyle use.

● One of these sections 
is in the more 
compatible “code 
page 0” / “multilingual 
plane” range 
(U+E000 to U+F8FF)

● Many unofficial 
standard uses:
● Klingon
● Medieval characters
● Other math symbol 

efforts
● Personal names in 

Asian Glyphs
● Not yet accepted 

languages



  

The road to a
truetype Tux
glyph.



  

Font Forge F/OSS Font Editing Suite 

fontforge.sourceforge.net



  

Remember, in Gtk+ apps:
ctrl+shift+u, then hex code

Where is tux's right eye?
Complexities of true type?



  



  

“Advanced” Unicode Operations

● Case Conversions / 
Collations

● Combining 
Characters

● Control Characters
● Variable Spaces
● Bi-directional text 

control
● Fraction Slash

● Script Specific (ie 
Music Notation Format)

● Surrogates (UTF-16 
retrofitting)

● Simple String Length 
(not so simple)

● Encoding Sanity Check 
/ Verification

● Numeric Character to 
Numerical Value
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